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Abstract. Ad-hoc querying is crucial to access information from Linked Data,
yet publishing queryable RDF datasets on the Web is not a trivial exercise. The
most compelling argument to support this claim is that the Web contains hun-
dreds of thousands of data documents, while only 260 queryable SPARQL end-
points are provided. Even worse, the SPARQL endpoints we do have are often
unstable, may not comply with the standards, and may differ in supported fea-
tures. In other words, hosting data online is easy, but publishing Linked Data via
a queryable API such as SPARQL appears to be too difficult. As a consequence,
in practice, there is no single uniform way to query the LOD Cloud today. In this
paper, we therefore combine a large-scale Linked Data publication project (LOD
Laundromat) with a low-cost server-side interface (Triple Pattern Fragments), in
order to bridge the gap between the Web of downloadable data documents and
the Web of live queryable data. The result is a repeatable, low-cost, open-source
data publication process. To demonstrate its applicability, we made over 650,000
data documents available as data APIs, consisting of 30 billion triples.
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1 Introduction

In 2001 the Semantic Web promised to provide a distributed and heterogeneous data
space, like the traditional Web, that could at the same time be used as a machine-
readable Web Services platform [4]. Data publishers would open up their knowledge
for potentially unanticipated reuse by data consumers. Intelligent agents would navi-
gate this worldwide and heterogeneous data space in order to perform intelligent tasks.
In 2015 this promise remains largely unmet.

When we look at empirical data about the rudimentary infrastructure of the Seman-
tic Web today, we see multiple problems: Millions of data documents exist that poten-
tially contain information that is relevant for intelligent agents. However, only a tiny
percentage of these data documents can be straightforwardly used by software clients.
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Typically, online data sources cannot be consistently queried over a prolonged period of
time, so that no commercial Web Service would dare to depend on general query end-
point availability and consistency. In practice, Semantic Web applications run locally
on self-deployed and centralized triple-stores housing data that has been integrated and
cleaned for a specific application or purpose. Meanwhile, the universally accessible and
automatically navigable online Linked Open Data (LOD) Cloud remains structurally
disjointed, unreliable, and — as a result — largely unused for building the next gener-
ation of large-scale Web solutions.

The problem here is sustainability. While it is technically possible to publish data in
a standards-compliant way, many data publishers are unable to do so. While it is techni-
cally possible to pose structured live queries against a large dataset, this is prohibitively
expensive in terms of both engineering effort and hardware support.

Take for instance the concept of federation, in which a query is evaluated against
multiple datasets at the same time. According to the original promise of the Seman-
tic Web federation is crucial, since it allows an automated agent to make intelligent
decisions based on an array of knowledge sources that are both distributed and hetero-
geneous. In practice, however, federation is extremely difficult [19] since most datasets
do not have a live query endpoint; the few query endpoints that do exist often have low
availability; the few available live query endpoints sometimes implement constrained
APIs which makes it difficult to guarantee that queries are answered in a consistent way.

We have performed a redeployment of the LOD Cloud that makes the Semantic Web
queryable on an unprecedented scale, while retaining its originally defined properties
of openness and heterogeneity. We provide an architecture plus working implementa-
tion which allows queries that span a large number of heterogeneous datasets to be per-
formed. The working implementation consists of a full-scale and continuously updating
copy of the LOD Cloud as it exists today. This complementary copy can be queried by
intelligent agents, while guaranteeing that an answer will be established consistently
and reliably. We call this complementary copy Linked Data-as-a-Service (LDaaS).

LDaaS was created by tightly combining two existing state-of-the-art approaches:
the LOD Laundromat and Linked Data Fragments. While the integration itself is straight-
forward, we show that its consistent execution delivers a system that is able to meet a
wide-spanning array of requirements that have not been met before in both width and
depth.

This paper is organized as follows: Section 2 given an overview of the core concepts
and related work. Section 3 details the motivation behind LDaaS. Section 4 specifies
the architecture and design of LDaaS, which we evaluate in Section 5. We conclude in
Section 6.

2 Core Concepts & Related Work

2.1 Web Interfaces to RDF Data
In order to characterize the many possibilities for hosting Linked Datasets on the Web,
Linked Data Fragments (LDF) [26] was introduced as a uniform view on all possible
Web APIs to Linked Data. The common characteristic of all interfaces is that, in one
way or another, they offer specific parts of a dataset. Consequently, by analyzing the



parts offered by an interface, we can analyze the interface itself. Each such part is called
a Linked Data Fragment, consisting of:

– data: the triples of the dataset that match an interface-specific selector;
– metadata: triples that describe the fragment;
– controls: hyperlinks and/or hypermedia forms that lead to other fragments.

The choices made for each of those elements influence the functional and non-functional
properties of an interface. This includes the effort of a server to generate fragments, the
cacheability of those fragments, the availability and performance of query execution,
and the party responsible for executing those queries.

Using this conceptual framework, we will now discuss several interfaces.

Data dumps File-based datasets are conceptually the most simple APIs: the data con-
sists of all triples of the dataset. They are possibly combined into a compressed archive
and published at a single URL. Sometimes the archive contains metadata, but con-
trols—with the possible exception of HTTP URIs in RDF triples—are not present.
Query execution on these file-based datasets is entirely the responsibility of the client;
obtaining up-to-date query results requires re-downloading the entire dataset periodi-
cally or upon change.

Linked Data Documents By organizing triples by subject, Linked Data Documents
allow to dereference the URL of entities. A document’s data consists of triples related
to the entity (usually triples where the subject or object is that entity). It might contain
metadata triples about the document (e.g. creator, date) and its controls are the URLs
of other entities, which can be dereferenced in turn. Linked Data Documents provide
a fast way to collect the authoritative information about a particular entity and they are
cache-friendly, but predicate- or object-based queries are practically infeasible.

SPARQL endpoints The SPARQL query language [13] allows to express very precise
selections of triples in RDF datasets. A SPARQL endpoint [10] allows the execution
of SPARQL queries on a dataset through HTTP. A fragment’s data consists of triples
matching the query (assuming the CONSTRUCT form); the metadata and control sets are
empty. Query execution is performed entirely by the server, and because each client can
ask highly individualized requests, the cacheability of SPARQL fragments is quite low.
This, combined with complexity of SPARQL query execution, likely contributes to the
low availability of public SPARQL endpoints [1,7]. To mitigate this, many endpoints re-
strict usage, by reducing the allowed query execution time, limiting the number of rows
that can be returned or sorted, or not supporting more expensive SPARQL features [7].

Triple Pattern Fragments The Triple Pattern Fragments (TPF) API [25] has been
designed to minimize server processing, while at the same time enabling efficient live
querying on the client side. A fragment’s data consists of all triples that match a specific
triple pattern, and can possibly be paged. Each fragment (page) contains the estimated
total number of matches, to allow for query planning, and contains hypermedia con-
trols to find all other Triple Pattern Fragments of the same dataset. The controls ensure
each fragment is self-describing: just like regular webpages do for humans, fragments
describes in a machine-interpretable way what the possible actions are and how clients



can perform them. Consequently, clients can use the interface without needing the spec-
ification. Complex SPARQL queries are decomposed by clients into Triple Pattern Frag-
ments. Since requests are less granular, fragments are more likely to be reused across
clients, improving the benefits of caching [25]. Because of the decreased complexity,
the server does not necessarily require a triple-store to generate its fragments.

Other specific APIs Several APIs with custom fragments types have been proposed,
including the Linked Data Platform [24], the SPARQL Graph Store Protocol [20], and
other HTTP interfaces such as the Linked Data API [17] and Restpark [18]. In contrast
to Triple Pattern Fragments, the fragments offered by these APIs are not self-describing:
clients require an implementation of the corresponding specification in order to use the
API, unlike the typically self-explanatory resources on the human Web. Furthermore,
no query engines for these interfaces have been implemented to date.

2.2 Existing Approaches to Linked Data-as-a-Service

Large Linked Datasets The Billion Triple Challenge3 is a collection of crawled Linked
Data that is publicly available and that is often used in Big Data research. It is crawled
from the LOD Cloud [5] and consists of 1.4 billion triples. It includes large RDF
datasets, as well as data in RDFa and Microformats. However, this dataset is not a com-
plete crawl of the LOD Cloud (nor does it aim to be), as datasets from several catalogs
are missing. Additionally, the latest version of this dataset dates back to 2012.

Freebase [6] publishes 1.9 billion triples, taken from manual user input and existing
RDF and Microformat datasets. Access to Freebase is possible through an API, through
a (non-SPARQL) structured query language, and as a complete dump of N-Triples.
However, these dumps include many non-conforming, syntactically incorrect triples.

Large-scale Linked Data indexes In order to make Linked Data available through
a centralized interface, Sindice [21], active from 2007 to 2014, crawled Linked Data
resources, including RDF, RDFa and Microformats. Datasets were imported on a per-
instance and manual opt-in basis. Raw data versions cannot be downloaded and access
is granted through a customized API.

LODCache4, provided by OpenLink, similarly crawls the Web for Linked Data, but
does not make data dumps available. Its SPARQL endpoint suffers from issues such as
low availability, presumably related to its enormous size of more than 50 billion triples.
There is no transparent procedure to include data manually or automatically. Given the
focus on size, its main purpose is likely to showcase the scalability of the Virtuoso
triple-store, rather than providing a sustainable model for Linked Data consumption on
the Web. Other initiatives, such as Europeana [14], aggregate data from specific content
domains, and allow queries through customized APIs.

Finally, DyLDO [16] is a long-term experiment to monitor the dynamics of a core
set of 80 thousand Linked Data documents on a weekly basis. Each week’s crawl is
published as an N-Quads file. This work provides interesting insight in how Linked
Data evolves over time. It is not possible to easily select triples from a single dataset,
and not all datasets belonging to the Linked Data Cloud are included. Another form of

3 See http://km.aifb.kit.edu/projects/btc-2012/
4 See http://lod.openlinksw.com/
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incompleteness stems from the fact that the crawl is based on URI dereferencing, not
guaranteeing datasets are included in their entirety.

LOD Laundromat The LOD Laundromat [3] crawls the Linked Data Cloud, and re-
publishes any Linked Dataset it finds, in a canonical, standards-compliant, compressed,
N-Triples or N-Quads format. The goal of LOD Laundromat is not that of a primary
publication platform. Instead, it is a complementary approach to existing efforts, to
publish siblings of existing idiosyncratic datasets. The collection of datasets that it
comprises is continuously being extended, both in an automated fashion as well as a
manual fashion: anyone can add their dataset URL to the LOD Laundromat5, where
their dataset will be cleaned and re-published. Human data consumers are able to nav-
igate a large collection of high-quality datasets, and download the corresponding clean
data. Additionally, machine processors are able to easily load very large amounts of
real-world data, by selecting clean data documents through a SPARQL query.

Dydra Dydra6 is a cloud-based RDF graph database, which allows users without host-
ing capabilities to publish RDF graphs on the Web. Via their Web interface, Dydra
provides a SPARQL endpoint, the option to configure permissions, and other graph
management features. However, access to Dydra is limited: free access is severely re-
stricted, and there are no public pay plans for paid services.

3 Motivation

In this section, we motivate why there is a need for an alternative deployment of the
Semantic Web, and why we opt for a Linked Data-as-a-Service approach.

3.1 Canonical form
One of the biggest hurdles towards Web-scale live querying is that — at the moment —
Semantic Web datasets cannot all be queried in the same, uniform way (Problem 1).

Problem 1. In practice, there is no single, uniform way in which the LOD Cloud can
be queried today.

First of all, most Semantic Web datasets that are available online are data dumps [9,15],
which implies that they cannot be queried live. In order to perform structured queries on
such datasets, one has to download the data dumps and deploy them locally. Secondly,
many data dumps that are available online are not fully standards-compliant [2,15]. This
makes the aforementioned local deployment relatively difficult, since it requires the use
of tools that can cope with archive errors, HTTP errors, multiple syntax formats, syntax
errors, etc. Thirdly, not all datasets that can be queried live use a standardized query lan-
guage (such as SPARQL). Indeed, some require a data consumer to formulate a query
in a dedicated query language or to use a custom API. Fourthly, most custom APIs are
not self-describing, making it relatively difficult for a machine processor to create such
queries on the fly. Fifthly, most online datasets that can be queried live and that are us-
ing standardized query languages such as SPARQL are imposing restrictions on queries

5 See http://lodlaundromat.org/basket
6 See http://dydra.com
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that can be expressed and results that can be returned [1, 7]. Finally, different SPARQL
endpoints impose different restrictions [7]. This makes it difficult for a data consumer to
predict whether, and if so how, a query will be answered. The latter point is especially
relevant in the case of federated querying (see Section 3.4), where sub-queries are eval-
uated against multiple endpoints with potentially heterogeneous implementations.

For the last decade or so, Problem 1 has been approached by creating standards,
formulating guidelines, and building tools. In addition, Semantic Web evangelists have
tried to educate and convince data producers to follow those guidelines and use those
tools. This may still be the long-term solution. However, we observe that this approach
has been taken for over a decade, yet leading to the heterogeneous deployment de-
scribed above. We therefore introduce the complementary Solution 1 that allows all
Semantic Web data to be queried live in a uniform way and machine-accessible way.

Solution 1. Allow all Semantic Web documents to be queried through a uniform inter-
face that is standards-compatible and self-descriptive.

3.2 Scalability & availability
After the first 14 years of Semantic Web deployment there are at least millions of data
documents [8, 12] but only 260 live query endpoints [7]. Even though the number of
endpoints is growing over time [1, 7], at the current growth rate, the gap between data
dumps and live queryable data will only increase (Problem 2). The number of query
endpoints remains relatively low compared to the number of datasets, and many of the
endpoints that do exist suffer from limited availability [7].

Problem 2. Existing deployment techniques do not suffice to close the gap between the
Web of downloadable data documents and the Web of live queryable data.

Several causes contribute to Problem 2. Firstly, it is difficult to deploy Semantic Web
data, since this currently requires a complicated stack of software products. Secondly,
existing query endpoints perform most calculations on the server-side, resulting in a
relatively high cost and thus a negative incentive for the data publisher. Thirdly, in
the presence of dedicated query languages, custom APIs, and restricted SPARQL end-
points, some have advocated to avoid SPARQL endpoints altogether, recommending
the more flexible data dumps instead, thereby giving up on live querying. Solution 2
addresses these causes.

Solution 2. Strike a balance between server- and client-side processing, and automat-
ically deploy all Semantic Web data as live query endpoints. If clients desire more flex-
ibility, they can download the full data dumps as well.

3.3 Linked Data-as-a-Service
Even though software solutions exist to facilitate an easy deployment of various Web-
related services such as email, chat, file sharing, etc., in practice users gravitate towards
centralized online deployments (e.g., Google and Microsoft mail, Facebook chat, Drop-
box file sharing). We observe similar effects in the (lack of) popularization of Semantic
Web technologies (Problem 3). Even though multiple software solutions exist for cre-
ating, storing, and deploying Semantic Web services (e.g., RDF parsers, triple-stores,



SPARQL endpoints), empirical observations indicate that the deployment of such ser-
vices with existing solutions has been problematic [15]. As a consequence, live query-
ing of Semantic Web data has not yet taken off in the same way as other Web-related
tasks have.

Problem 3. Even though a technology stack for publishing Semantic Web data exists
today, there is currently no simplified Web Service that does the same thing on a Web-
scale.

While technologies exist that make it possible to publish a live query endpoint over
Semantic Web data, there is currently no simplified Web Service that allows data to be
deployed on a very large scale. Under the assumption that take-up of traditional Web
Services is an indicator of future take-up of Semantic Web Services (an assumption
that cannot be proven, only argued for), it follows that many data publishers may prefer
a simplified Web Service to at least perform some of the data publishing tasks (Solu-
tion 3).

Solution 3. Provide a service to take care of the tasks that have proven to be problem-
atic for data publishers, having an effective cost model for servicing a high number of
data consumers.

3.4 Federation
In a federated query, sub-queries are evaluated by different query endpoints. For ex-
ample, one may be interested in who happens to know a given person by querying
a collection of HTML files that contain FOAF profiles in RDFa. At present, querying
multiple endpoints is problematic (Problem 4), because of the cumulating unavailability
of individual endpoints, as well as the heterogeneity of interfaces to Linked Data.

Problem 4. On the current deployment of the Semantic Web it is difficult to query
across multiple datasets.

Given the heterogeneous nature of today’s Semantic Web deployment (Section 3.1),
there are no LOD Cloud-wide guarantees as to whether, and if so how, sub-queries will
be evaluated by different endpoints. In addition, properties of datasets (i.e., metadata
descriptions) may be relevant for deciding algorithmically which datasets to query in
a federated context. Several initiatives exist that seek to describe datasets in terms of
Linked Data (e.g., VoID, VoID-ext, Bio2RDF metrics, etc.). However, such metadata
descriptions are often not available, and oftentimes do not contain enough metadata in
order to make efficient query federation possible.

Solution 4. Allow federated queries to be evaluated across multiple datasets. Allow
metadata descriptions to be used in order to determine which datasets to query.

4 Workflow & Architectural Design

The scale of the LOD Cloud requires a low-cost data publishing workflow. Therefore,
the LOD Laundromat service is designed as a (re)publishing platform for data dumps,



i.e. data files. As detailed in Section 2.1, data dumps are the most simple API that
can be offered. To allow structured live querying, while still maintaining technical and
economical scalability, we have integrated the low-cost TPF API.

We first discuss the publishing workflow supported by the combination of the LOD
Laundromat and Triple Pattern Fragments. We then elaborate on the architectural design
of their integration, and how we improved both approaches to keep LDaaS scalable.

4.1 Re-publishing Workflow
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Fig. 1. LOD Laundromat (re)-Publishing Workflow

Figure 4.1 shows the re-publishing workflow of the LOD Laundromat (already pre-
sented in [3]), extended with the Triple Pattern Fragment API. Here, we see how the
LOD Laundromat (1) takes a reference to an online RDF document as input, (2) cleans
the data in the LOD Washing Machine, (3) stores several representations of the data, and
publishes the data through several APIs. Below, we discuss each step of the workflow
in detail.

Data Input The LOD Laundromat maintains a collection of Linked Data seed points,
called the LOD Basket7. The seed points are Web locations from which generally non-
standards compliant or ‘dirty’ data can be downloaded.

Cleaning Process The LOD Washing Machine8 is the module of the LOD Laundro-
mat that takes ‘dirty’ data documents from the LOD Basket and tries to download them.
Potential HTTP errors are stored as part of the data document’s metadata description
that is generated by the LOD Washing Machine. Data documents that occur in archives
are recursively unpacked. Once fully unpacked, the serialization format of the data doc-
ument is determined heuristically based on the file extension (if any), the value of the
Content-Type HTTP header (if present), and a lenient parse of the first chunk of the
data file. All standard RDF 1.1 serialization formats are supported: N-Quads, N-Triples,
RDFa, RDF/XML, TriG, and Turtle. Once the serialization format has been guessed, the

7 See http://lodlaundromat.org/basket
8 See https://github.com/LODLaundry/llWashingMachine
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document is parsed. Since many data documents contain syntax errors9, only compli-
ant triples are retained. Every warning is stored as metadata of the resultant dataset in
order to make the cleaning process transparent. As a final step, VoID descriptions that
occur within a document that is being cleaned are added to the LOD Basket for future
cleaning.

Storage The output of the cleaning process is stored in a canonical and easy to pro-
cess data format and is compressed using Gzip. The serialization format is either N-
Triples or N-Quads (depending on whether or not at least one quadruple is present in
the data file). The statements in the file are sorted lexicographically and any duplicates
are removed. IRIs are all encoded in the same way and the lexical expressions of data-
typed literals are mapped to their canonical lexical form. This means that two lines are
guaranteed to denote the same statement iff they compare identically on a character-by-
character basis. Because of these properties it is easy to process cleaned data files in a
uniform way, e.g., by streaming through a dataset knowing that the next triple ends with
the next newline character.

Next to compressed Gzip files, the datasets are stored as ‘Header, Dictionary Triples’
(HDT) files as well. HDT files are compressed, indexed files, in a binary serialization
format. HDT files are suitable for browsing and querying RDF data without requiring
to decompression and/or ingestion into a triple-store [11].

Besides the cleaned data files, LOD Laundromat uses a triple-store which dissemi-
nates the metadata obtained during the cleaning process. The triple-store also contains
metrics about the structural properties of each cleaned data document.10.

Data Publication The LOD Wardrobe11 module provides several APIs to access the
data generated by the LOD Laundromat.

The first API supports complete control over the data: the HDT and cleaned com-
pressed N-Triples/N-Quads files are available for download. An RDF dump of the LOD
Laundromat metadata is available for download as well. The HDT files allows users
to download datasets and either query them directly on the command-line (via triple-
pattern queries), or to publish these via a Triple Pattern Fragment API. The low-level
access to the compressed N-Triples/N-Quads files allow bulk processing of such files,
particularly considering the advantages that come with this canonical format: streamed
processing of a sorted set of statements.

The TPF API provides access via triple pattern queries, and uses HDT files as stor-
age type. This low-cost API, discussed in Section 2, enables structured querying on the
crawled datasets.

Finally, the third API is a SPARQL endpoint, which provides SPARQL access to the
metadata triple-store. The combination of this API with the previous two is powerful:
the SPARQL endpoint enables finding datasets based on structural properties such as
the in-degree, out-degree, serialization format, etc. Based on the query results, the user
can access the datasets by either downloading the Gzip or HDT files, or accessing the
Triple Pattern Fragments API.

9 For an indication, see http://lodlaundromat.org/visualizations/
10 Under submission: “LOD in a Box: The C-LOD Meta-Dataset”. See http://www.semantic-
web-journal.net/content/lod-box-c-lod-meta-dataset

11 See http://lodlaundromat.org/wardrobe/
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4.2 LDaaS Architectural Design
The architecture for crawling cleaning Linked Data is described in [3], where the archi-
tecture of TPF is described in [25]. Below we discuss the measures we took to combine
both systems, and the improvements we made to the scalability of LDaaS.

TPF horizontal scalability The HDT library can read and query HDT files that are
larger than main memory by loading them as memory-mapped files. This means the file
is mapped byte-by-byte to pages of virtual memory of the application, and regions of the
file are swapped in and out by the operating system as needed. This is not horizontally
scalable though: although this approach works for 30–40 large datasets, in practice, pro-
cesses with hundreds or thousands of memory-mapped files tend to become unstable.

Therefore, we extended the TPF architecture with an alternative strategy in which
only very large HDT files (≥ 10 GB) are mapped to memory. In order to query the re-
maining majority of smaller files, an out-of-process approach is used. When an HTTP
request arrives, the server spawns an external process that briefly loads the correspond-
ing HDT file, queries the requested triple pattern, and closes it again. While this involves
a larger delay than if the file were mapped to the server process, the overhead is limited
for such smaller files because of the efficient HDT index format, and it guarantees the
server process’ stability. The few large files are still memory-mapped, because spawn-
ing new processes for them would result in a noticeably longer delay.

HDT file generation The original LOD Laundromat architecture creates and serves
clean compressed Gzipped N-Quads and N-Triples files. To support the use of a TPF
API, we extended this implementation by generating HDT files as well. The HDT files
are automatically generated based on the clean compressed Gzipped N-Quads and N-
Triples files. Because the latest implementation of HDT does not support named graphs,
the N-Quads files are processed as regular triples, without the specified graph.

Adding TPF datasets efficiently Datasets crawled by the LOD Laundromat should be-
come available via the TPF API in a timely manner. The original TPF API applies sev-
eral ‘sanity checks’ on the data documents before hosting them. However, with 650,000
documents in the configuration file, this process requires minutes of processing time.
Because the LOD Laundromat pipeline guarantees ‘sane’ HDT files, we avoid this is-
sue by extending the TPF API with an optimized loading procedure which disables
these sanity checks. As a result, re-loading the configuration whenever a new dataset is
cleaned, requires seconds instead of minutes.

5 Evaluation

We use the architecture described in the previous section to present a working imple-
mentation where we publish the LOD Cloud via Triple Pattern Fragments. In this sec-
tion, we evaluate this deployment and validate the solutions from Section 3.

Solution 1: Allow all Semantic Web documents to be queried through a uniform inter-
face that is standards-compatible and self-descriptive.



Solution 1 is evaluated analytically. Currently, 650,950 datasets (29,547,904,444
triples) are hosted as live query endpoints. Although this does not include all existing
Semantic Web data, these numbers show that our approach can realistically be applied
on Web scale (see Solution 3 for usage numbers).

Since the Triple Pattern Fragments APIs are generated for all data in the LOD
Wardrobe, data queryable by LDaaS inherits the completeness and data standards-
compliance properties of the LOD Laundromat (see [3] for these compliance prop-
erties). Query standards-compliance — on the other hand — is attained only partially,
since the server-centric paradigm of the SPARQL specification is purposefully deviated
from in the current approach in order to fulfill Solution 2.12 This primarily involves
those parts of the SPARQL standard that require the Closed World Assumption (some-
thing the authors consider to be at odds with the basic tenets of Semantic Web philos-
ophy) and common data manipulation functions that can be easily implemented by a
client (e.g., sorting a list, calculating a maximum value).

The Linked Data Fragments API is self-descriptive, employing the Hydra vocabu-
lary for hypermedia-driven Web APIs.13 Hydra descriptions allow machine processors
to detect the capabilities of the query endpoints in an automated way. In addition, the
LDaaS query endpoints do not impose restrictions on the number of operations that
may be performed or the number of results that can be retrieved. This allows full data
graphs to be traversed by machine processors. Also, pagination is implemented in a re-
liable way, as opposed to SPARQL endpoints which cannot guarantee consistency with
shifting LIMIT and OFFSET statements.

Finally, uniformity is guaranteed on two-levels: data and interface. The former
leverages the LOD Laundromat infrastructure (validated in [3]) as an enabler for ho-
mogeneous deployment strategies. Thus, when an agent is able to process one data doc-
ument, it is also able to query 600K+ data documents. The latter denotes that through
Triple Pattern Fragments, processing queries only relies on HTTP, the uniform interface
of the Web. Queries are processed in exactly the same way by all endpoints, in contrast
to the traditional Semantic Web deployment where different endpoints implement dif-
ferent standards, versions or features.

Solution 2: Strike a balance between server- and client-side processing, and automati-
cally deploy all Semantic Web data as live query endpoints. If clients desire more flexi-
bility, they can download the full data dumps as well.

The SPARQL protocol relies on servers to do the heavy lifting: the complete com-
putational processing is performed on the server, and the client is only responsible for
sending the request and receiving the SPARQL results. The TPF API, used by LDaaS,
takes a different approach. Executing SPARQL queries on the TPF API requires the
client to perform joins between triple patterns, and e.g. apply filters or aggregations.
As a result, the computational processing is shared between the client and the server,
putting less strain on the server.

12 Even though there is a client-side rewriter that allows SPARQL queries to be performed against
an LDF server backend, the standards-compliance of this rewriter is not assessed in this paper.

13 See http://www.hydra-cg.com/spec/latest/core/

http://www.hydra-cg.com/spec/latest/core/
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Fig. 2. Processing time is shared between client and server.

To quantify this balancing act between server and client-side processing of LDaaS,
we evaluated a set of queries from the SP2B benchmark, on a (synthetic) dataset of
10 million triples14, added to the LOD Laundromat. We measure the client-side and
server-side processing time, both running on the same hardware, and excluding net-
work latency. The results, shown in figure 5, confirm that the computation is shared
between client and server. More specifically, the client does most of the processing for
the majority of these SP2B SPARQL queries.

Solution 3: Provide a service to take care of the tasks that have proven to be problem-
atic for data publishers, having an effective cost model for servicing a high number of
data consumers.

Apart from facilitating common tasks (cleaning, ingesting, publishing), the LOD
Laundromat operates under a different cost model than public SPARQL endpoints. In
the month prior to submission, the LOD Laundromat served more than 700 users who
downloaded 175,000 documents and who issued more than 35,000 TPF API requests.

We consider the hardware costs of disk space and RAM usage below.

Disk space Currently, 650,950 datasets (29,547,904,444 triples) are hosted as Triple
Pattern Fragments. The required storage is 265GB in the compressed HDT format, or
on average 0.41MB per dataset or 8.97 bytes per triple. The disk space used to store
the equivalent gzip-compressed N-Triples (or N-Quads) files is 193GB (0.30MB per
dataset or 6.53 bytes per triple). Such compressed archives do not allow for efficient
triple-pattern queries, which the HDT files can handle at high speed.

Memory usage The TPF server consists of 10 independent worker processes. Because
JavaScript is single-threaded, it does not have a concurrency policy for memory access,
so each worker needs its own space to allocate resources such as the metadata for each
of the 650,950 datasets. However, no further RAM is required for querying or other
tasks, since they are performed directly on the HDT files. We have allocated 4 GB per
worker process, which was experimentally shown to be sufficient, bringing the total to
40 GB of RAM.
14 Experiments showed that these results do not differ greatly between SP2B datasets of different

sizes
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Fig. 3. All FedBench queries complete slowly, but successfully, with high average recall (shown
on top of each bar) when ran on the deployed LDaaS.

Solution 4: Allow federated queries to be evaluated across multiple datasets. Allow
metadata descriptions to be used in order to determine which datasets to query.

Finally, we ran FedBench [23] to test the employability of the resulting TPF inter-
faces for answering federated SPARQL queries. A total of 9 datasets15, excluding the
isolated SP2B dataset, were added to the LOD Laundromat, completing our publishing
workflow. Also, we extended the existing TPF client to distribute each fragment request
to a predefined list of interfaces and aggregate the results.

We executed the Cross Domain (CD), Linked Data (LD), and Life Science (LS)
query sets in three runs, directly on ldf.lodlaundromat.org from a desktop com-
puter on an external high-speed university network. Fig. 3 shows the average execution
time for each query with the number of returned results. All queries were successfully
completed with an average result recall of 0.81, which confirms the ability to evaluate
federated queries. The imperfect recall is a result of an occasional request timeout in
queries (LS7, LD1, LD3, LD8, LD11), which, due to limitations of the current imple-
mentation, can drop potential results. Next, general execution time is magnitudes slower
compared to state-of-the-art SPARQL Endpoint federation systems [22]. However, this
is expected considering a) the LDF paradigm which sacrifices query performance for
low server cost, and b) the greedy implementation where the set of sent HTTP requests
is a naive Cartesian product between the set of fragments and the datasets. Nevertheless,
several queries (LD9, LS5, CD2, CD1, LS1, LD3, LS2) complete within 10s, which is
promising for future development in this area.

6 Conclusion
After the first 14 years of Semantic Web deployment the promise of a single distributed
and heterogeneous data-space remains largely unfulfilled. Although RDF-based data
exists in ever-increasing quantities, large-scale usage by intelligent software clients is
not yet a reality. In this paper we have identified and analyzed the main problems that
contribute to this lack of usage. Although this list is probably not exhaustive, we se-
lected four pressing problems based on empirical evidence and related work: a) no

15 https://code.google.com/p/fbench/wiki/Datasets

ldf.lodlaundromat.org
https://code.google.com/p/fbench/wiki/Datasets


single uniform way exists to query the LOD cloud; b) there exists a gap between the
Web of downloadable data documents and the Web of live queryable data; c) despite
the available technology stack, no simplified Web service offers the same functionality
on a Web-scale; d) querying across multiple datasets on the current Semantic Web is
difficult.

In order to address these issues, we formulated corresponding sustainable solutions,
which we proposed and implemented as a redeployment architecture for the Linked
Open Data cloud. By combining a large-scale Linked Data publication project (LOD
Laundromat) with a low-cost server-side interface (Triple Pattern Fragments), we were
able to realize this with minimal engineering.

In doing so, we a) closed the API gap by providing low-cost structured query capa-
bilities to otherwise static datasets; b) did so via a uniform, self-descriptive, and stan-
dards-compatible interface; c) enabled in turn federated queries across a multitude of
datasets, and d) provide a service for publishers to use. More important than the de-
ployment we provide is the wide applicability of the open source technology stack,
whose architecture is detailed in this paper. In contrast to centralized approaches such
as the LOD Cache, which focuses on a single centralized database of everything, our
approach of one low-cost interface per dataset works in a Web context with multi-
ple servers. It enables querying over multiple datasets by providing clients with the
resources needed to perform federation themselves, rather than seizing server-side con-
trol of this costly task. To increase accessibility even more, our future work involves
disseminating the graph information of N-Quads files via the API as well, and provid-
ing an uniform, self-describing API containing all dataset summarizations, in order to
improve the discoverability.

As a result of the approach introduced in this paper, we can now provide live
queryable access to a large amount of datasets that could previously only be reliably
published as data dumps. While it is possible that the current Semantic Web path will
eventually lead there, it is worthwhile—and necessary—to explore alternative stacks
already today. Given the solutions it brings to the current Semantic Web problems, we
conclude that the technology stack introduced in this paper enables a Semantic Web
that is not only technologically, but also economically scalable.
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